Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices.
نویسندگان
چکیده
The aim of this study is to investigate and demonstrate the mechanical and corrosive characteristics of the neodymium-containing magnesium alloy MgNd2 (Nd2), which can be used as a resorbable implant material, especially in the field of stenting applications. To determine the mechanical characteristics of Nd2, tensile and compression tests were initially carried out in the hot extruded state. Here a unique elongation ratio (~30%) of the alloy could be observed. Subsequent T5 and T6 heat treatments were arranged to reveal their effect on the alloy's strengths and elongation values. The general degradation behaviour of Nd2 in a 0.9% NaCl solution was investigated by means of polarization curves and hydrogen evolution. In addition to this, by using various in vivo parameters, a corrosion environment was established to determine the alloy's degradation in vitro. Here, the mass loss per day in (MgF(2) and Bioglass)-coated and uncoated states and the corresponding maximum forces resulting from subsequent three-point bending tests revealed slow and steady corrosion behaviour. The cell viability and proliferation tests carried out on L-929 and MSC-P5 cells also showed good results. The mechanical and corrosive characteristics determined, as well as the in vitro test results obtained within the scope of this study, led to the development and successful in vivo testing of an MgF(2)-coated Nd2 mucosa stent which was introduced as an appropriate resorbable application.
منابع مشابه
Preparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices
In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and silicon substrates using single ion beam sputtering technique. The physical and chemical properties of prepared films were investigated by different characterization technique. X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...
متن کاملSynthesis, characterization and hydrogen storage properties of Mm(Ni,Co,Mn,Al)5 alloy
The hydrogenation characterizations of the hydrogen storage alloy MmNi4.22Co0.48Mn0.15Al0.15 (Mm= mischmetal), and the effect of hydrogenation/dehydrogenation (H/D) cycling on its structural and morphological properties are investigated. The results indicate that after several H/D cycles the alloy was pulverized into fine particles, but it kept its hexagonal CaCu5-type structure. The pressure-c...
متن کاملGlucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance
Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiol...
متن کاملBioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devi...
متن کاملدستگاههای کاشتپذیر برای کودکان ناشنوا
The idea of providing hearing to profoundly deaf patients by artificially stimulating the sensory system has progressed from a futuristic possibility to reality. Generally, an implantable hearing device is designed to capture sound and present it to the auditory system, where at least part of the device is surgically implanted in the child receiving it. The goal of the implantable devices in yo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2012